数学建模 什么意思?
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
数学模型(Mathematical Model)是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的***策略或较好策略。
数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。
扩展资料:
建模过程
1、模型准备
了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。
2、模型假设
根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
3、模型建立
在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。
4、模型求解
利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。
5、模型分析
对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。
6、模型检验
将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
7、模型应用与推广
应用方式因问题的性质和建模的目的而异,而模型的推广就是在现有模型的基础上对模型有一个更加全面的考虑,建立更符合现实情况的模型。
参考资料来源:百度百科-数学建模
数学建模是啥意思?
数学建模就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。
拓展资料:
1、当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。
2、数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。
3、数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。
4、将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
数学建模是什么意思
数学建模是一种数学的思考方法
是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。.数学建模就是用数学语言描述实际现象的过程。
这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。
这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。.数学模型一般是实际事物的一种数学简化。
数学建模 什么意思?.
数学建模是一种数学的思考方法
是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。.数学建模就是用数学语言描述实际现象的过程。
这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。
这里的描述不但包括外在形态、内在机制的描述,也包括预测、试验和解释实际现象等内容。
我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只研究数学,而不关心数学在实际中的应用的数学家)变成物理学家、生物学家、经济学家甚至心理学家等等的过程。.数学模型一般是实际事物的一种数学简化。
关于数学建模是什么意思和数学模型有哪些的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。