图片来自网络
哈喽,小天来为大家解答以下的问题,关于高一数学必修一教学视频,高一数学必修一教学这个很多人还不知道,那么现在让我带着大家一起来看看吧!
高一数学必修1各章知识点总结第一章 集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
? 注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x?R| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
A?A②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A?B, B?C ,那么 A?C④ 如果A?B 同时 B?A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型 交 集 并 集 补 集定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作 ,即CSA= 韦恩图示 性 质 A A=A A Φ=ΦA B=B AA B A A B BA A=AA Φ=AA B=B AA B AA B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B)A (CuA)=UA (CuA)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有 个 3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .4.设集合A= ,B= ,若A B,则 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。
6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义.? 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法A、 描点法:B、 图象变换法常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作“f(对应关系):A(原象) B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。
6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。
二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1 8.设 是R上的奇函数,且当 时, ,则当 时 = 在R上的解析式为9.求下列函数的单调区间: ⑴ ⑵ ⑶ 10.判断函数 的单调性并证明你的结论.11.设函数 判断它的奇偶性并且求证: .第二章 基本初等函数一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ *.? 负数没有偶次方根;0的任何次方根都是0,记作 。 当 是奇数时, ,当 是偶数时, 2.分数指数幂正数的分数指数幂的意义,规定: , ? 0的正分数指数幂等于0,0的负分数指数幂没有意义3.实数指数幂的运算性质(1) ? ;(2) ;(3) .(二)指数函数及其性质指数函数的概念:一般地,函数 叫做指数函数,其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质a>1 01 00,a 0,函数y=ax与y=loga(-x)的图象只能是 ( )2.计算: ① ;② =; = ;③ = 3.函数y=log (2x2-3x+1)的递减区间为 4.若函数 在区间 上的最大值是最小值的3倍,则a= 5.已知 ,(1)求 的定义域(2)求使 的 的取值范围第三章 函数的应用一、方程的根与函数的零点函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。 2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。 即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.3、函数零点的求法:○1 (代数法)求方程 的实数根;○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数 .(1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.(2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.(3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.5.函数的模型。 本文分享完毕,希望对大家有所帮助。